Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 446: 130644, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587601

RESUMO

The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8-30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.". Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture.


Assuntos
Iodo , Nanopartículas , Neoplasias da Glândula Tireoide , Humanos , Bismuto , Dióxido de Nitrogênio , Dióxido de Silício , Radioisótopos do Iodo , Envelhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...